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DEaf-MOPS/D: AN IMPROVED DIFFERENTIAL EVOLUTION 

ALGORITHM FOR SOLVING COMPLEX MULTI-OBJECTIVE 

PORTFOLIO SELECTION PROBLEMS BASED ON 

DECOMPOSITION 

 

Abstract. With the high-speed economic development and economic 

diversification of the world, it is very necessary to develop an effective and 

efficient portfolio selection method with high precision and robustness. In 

this study, we first introduce an enhanced multi-objective cardinality 

constrained mean-variance (CCMV) model, in which the transaction costs 

and price-earning (P/E) ratio are appended in the model, then an improved 

differential evolution algorithm with adaptive fine-tune is proposed to solve 

multi-objective portfolio selection problems based on decomposition 

(DEaf-MOPS/D).Finally, five simulation experiments on five benchmark 

datasets (HangSeng, DAX 100, FTSE 100, S&P 100, and Nikkei 225) are 

employed to investigate the performance of our method. The experimental 

results indicate that the performance of DEaf-MOPS/D is superior to other 

compared algorithms, and its runtime is much less than other algorithms, 

which demonstrate that our method is efficient in solving high-dimension 

portfolio selection problems. 

     Keywords: Portfolio Selection problems, Multi-objective, Differential    

Evolution, price-earning. 
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1. Introduction 

In 1981, Nobel Prize winner James Tobin said: "Do not put eggs in a 

basket.", which means reducing risk by diversifying investments. In wealth 

management, we aim to maximum return and reduce the risk by following the 

principle of diversifying investments. Therefore, choosing the best assets and the 

right amount of assets has become a very important research topic, which is a 

NP-hard problem. To tackle this problem, some mathematical models and solving 

methods have been proposed. Mean-variance (MV) model that is the first 

mathematical model was presented by Markowitz in 1959 (Markowitz, H. M. 

1959), it measures the return and risk by mean and variance of portfolio returns. 

The MV established a touchstone in the portfolio theory. Next, some alternative 

risk measures are proposed for estimating the risk, such as Value-at-Risk (VaR) (P. 

Jorion, 1997), Mean-Absolute Deviation (MAD) (Yamazaki, K. H. 1991) and 

Conditional VaR (R.T. Rockafellar and S. Uryasev, 2000). However, it is 

estimated that little is known. "Do not put the eggs in a basket". In fact, there is a 

second sentence, that is - "but don't put it in too many baskets". Hence, some 

constraints must be considered by real-life investors, such as cardinality constraints 

(CC) used to restrict the number of assets in the portfolio (M.J. Magill and G.M. 

Constantinides, 1976), transaction costs (TC) (K. Metaxiotis, K and Liagkouras, 

2012) for reducing the transaction costs from the outcome (Ertenlice O and Kalayci 

C B, 2018).  

In this work, we proposed a swarm intelligent optimization algorithm 

(DEaf-MOPS/D) to tackle high-dimensional portfolio selection problems. In 

section II, we introduce cardinality constraint mean-variance (CCMV) model and 

merge the transaction costs and price-earnings ratio into the CCMV model. Section 

III analyses the challenges of solving the CCMV models. Related works of solving 

the MV and CCMV models are introduced in section IV. Our proposed algorithm 

is discussed in detail in section VI. Section VII and VIII are respectively the 

simulation experiments and conclusion. 

2. Mathematical Model 

The standard MV models have two objectives, the first one is for 

maximum investment return of selected assets, the second one aims at minimum 

the risk of investment. In realistic investments, the bound constraints, CC, TC and 
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price-earnings ratio (P/E) of asset all are very important factors to be considered by 

the investors. In this study, we employ multiple constraints MV model as follows, 
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where the objective function )(1 xf  aims to maximum the expected 

returns.  )(x2f  represents the investment risk. )(x3f  is used to choose the 

assets with minimum the price-earnings (P/E) ratio. x= (x1, x2,…, xn) denotes the 

vector of portfolio weights, 0<xi<1(i=1,2,…,n). ),...,,(μ n21   represents 

the vector of expected return rate of all assets. )( ix  is the transaction cost of ith 

asset.  is the covariance matrix of rates of asset returns, ijσ denotes the return 

covariance of assets i and j. pi and ei represent the market value and earnings of ith 

asset. L and U are respectively the lower bound and upper bound of ix . K is 

the number of assets expected to be invested. 1iz  if the ith asset are chosen, 

otherwise 0iz . 

In the mathematical model, we append the price-earnings (P/E) ratio to the 

cardinality constraint mean variance (CCMV) model because, in a real portfolio, 
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the P/E is also a very important factor in experts’ considerations. The P/E denotes 

profit gained through the stock relative to its market price that can be important 

and effective for investments.  

 

3. Challenges for solving the high-dimensional portfolio selection 

problems 

The CCMV is a very complex NP-hard problem, solving it faces the 

follow challenges. 

(1) Combinatorial Explosion. Portfolio selection is a high-dimensional 

combination optimization problem, heavy computation burden is the 

first challenge. 

(2) Multi-objective optimization. The CCMV model has multiple 

objective functions that are mutually exclusive, for example, the 

expected returns and the risk are contradictory. How to balance the 

multi-objective functions is the second challenge. 

(3) Constraint Handling. There are multiple constraint conditions in the 

CCMV models, such as the number (K) of assets expected to be 

invested, portfolio weight 
U

i   xL
. These constraints are 

usually contradictory with the objective function. Therefore, constraint 

handling is the third challenge. 

 

4. Related work  

Swarm intelligent optimization algorithm, which is not limited to the 

characteristics of mathematical models, has attracted considerable attention in 

solving high-dimensional portfolio selection problem. Chang et al. (T.-J. Chang et 

al. 2008) and M.Woodside-Oriakhi et al.( M. Woodside-Oriakhi et al.,2011) 

employed genetic algorithm (GA) to solve the CCMV model, in genetic algorithm, 

a candidate solution of portfolio selection was represented by a binary vector. 

K.Liagkouras and K.Metaxiotis proposed a multio-bjective evolutionary algorithm 

to solve multi-period mean–variance fuzzy portfolio optimization model 

(K.Liagkouras and K.Metaxiotis, 2018). In literature, particle swarm optimization 

(PSO) are used to solving constrained portfolio optimization problems (H. Zhu, 

2011). S. Kamali proposed a hybrid algorithm that merges PSO and GA to 
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optimize portfolio (S. Kamali, 2014). B. Niu et al. and L.Tan et al. adopted 

bacterial foraging optimization to solve constrained portfolio optimization 

problems (B. Niu et al., 2012, L.Tan, et al. 2013). Invasive weed optimization is 

employed for solving multi-objective portfolio optimization problem (A.R. Pouya, 

et al., 2016). I Strumberger introduced a hybrid Bat Algorithm for constrained 

portfolio optimization (Strumberger I, et al., 2017). C.B. Kalayci presented an 

artificial bee colony algorithm with feasibility enforcement and infeasibility 

toleration procedures for CCMV portfolio optimization (C.B. Kalayci, et al., 2017). 

In addition, harmony search and teaching-learning-based optimization were 

employed to solve high-dimensional portfolio selection problems (Tuo SH and He 

H, 2016, 2018). These studies have been good progress in solving portfolio 

selection problems. However, most of algorithms take a long time to obtain the 

optimal frontier because many various weight coefficients of objective functions 

are considered. In this study, we propose a fast optimization algorithm, named 

DEaf-MOPS/D, which improves differential evolution algorithm using adaptive 

fine-tuning strategy to solve multi-objective portfolio selection problems based on 

decomposition. 

 

5. Proposed algorithm DEaf-MOPS/D 

The proposed DEaf-MOPS/D algorithm employs the idea of MOEA/D 

(Zhang Q and Hui L, 2007), it decomposes multi-objective portfolio selection 

problem into a number of scalar optimizations subproblems and then each 

subproblem is optimized by employing differential evolution (DE) according to the 

information from its neighboring subproblems. The DEaf-MOPS/D can obtain all 

the dominated solutions simultaneously, it has much lower computational 

complexity than other kind of optimization algorithms, such as NSGA-II (K. Deb, 

et al., 2002) and SPEA-II (E. Zitzler, et al., 2001). The steps of DEaf-MOPS/D are 

shown in Figure 1. 

 

 

 

 

Algorithm 1. DEaf-MOPS/D algorithm 

Step 1. Parameter initialization.  
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D – Dimension of solution, it is equal to the total number of assets investor can select. 

m – The number of objective functions.  
L , U  – the lower and upper bound of portfolio weights.  

K – The number of assets expected to be invested. 

T-- The number of weight vectors in the neighborhood of each weight vector. 

(1) Generate H weight coefficients  H21 ,,,    uniformly in [0,1], and then 

construct N  weight vector  N
λλλ ,,, 21   1m

1mHCN 

  where 

   


m

j j
i

1m21 1,,,,  λ . 

(2) Normalize weight vector. 



N

i

iii

1

/ λλλ . 

Step 2. Assign the neighborhoods for each weight vector. 

Find the T closest weight vectors  i
T

ii  ,,, 21   to ith weight vector i  

according to the distance from 
i  to other weights vectors. 

 

Step 3. Population initialization.  

(1) Generate population (
N21

x,,x,x  ) uniformly randomly in the feasible 

space. 

(2) Initialize the reference point by setting 

      i

k

i

k

i

k

k

* xf,,xf,xfminzz  , k=1,2,…,T; i=1,2,…,N. 

(3) Execute constraint handles as literature [18-19]. 

(4) Evaluate each individual using objective functions. 

  )(,),(),( T21

iii
xxx ffffzi   

(5) gen=1  

 

Step 3. Differential evolution for each individual 
i

x (i=1,2,…,N). 

(1) Mutation operation (see Algorithm 2).  

(2) Crossover operation (see Algorithm 2). 

(3) Selection operation (see Algorithm 2). 

 

Step 4. gen = gen + 1. 

If gen < Gen 

go to Step 3. 

Figure 1. Steps of DEaf-MOPS/D algorithm 

 

Algorithm 2. Differential evolution for individual 
ix  
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(1) Get the T closest weight vectors  Tiii ,2,1, ,,,    to ith weight vector
i . 

(2) Select three individuals  r3r2r1 ， x， xx from population randomly. 

(3) Mutation operation.  r3r2r1i

new xxFxx  , F is the scale factor. 

otherwise,

0.5gen/Gen0.25,
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i

jnew,x denotes the jth dimension of 
i

newx , r and rand represent the random number 

between 0 and 1. Gen and gen denote the maximum number of iterations and the 

current number of iterations, respectively. fw is the fine-tuning step, it is changed as 

follow, 
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(5) Execute constraint handles as literature (T.Cura et al., 2009 ). 
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Figure 2. The process of improved differential evolution strategy 

6. Experiments 

 The proposed algorithm DEaf-MOPS/D has been investigated on five 

benchmark datasets (HangSeng, DAX100, FTSE100, S&P100 and Nikkei) that can 

be download from OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html). 

We use DEaf-MOPS/D to conduct the experiments and analysis for unconstraint, 

cardinality constraint, transaction cost constraint, and the experimental results are 

compared with four swarm intelligent algorithms: HS-TLBO (Tuo SH, 2016), 

HSDS (Tuo SH and He H, 2018), GA (Chang TJ et al., 2000), PSO (T.Cura, 2009).  
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The parameter settings of DEaf-MOPS/D are as follows: 

Scale factor F = 0.5; Crossover probability cp = 0.35; T = 10. 

NP

mD2000
Gen  (m is the number of objective functions, D denotes the 

number of assets that can be selected. NP is the size of population of 

DEaf-MOPS/D). 

Performance indexes: in the experiment, mean Euclidian distance (MED), 

variance of returns error (VRE), mean return error (MRE) （(T.Cura et al., 2009 )）

and runtime are adopted to evaluate the performance of algorithms. 

 

6.1 Unconstraint tests.  

All of the constraint conditions are not considered. 

(Test 1.1) Two objective functions. The objective function of P/E is not 

employed in the test. The experimental results are summarized in Table 1. 

(Test 1.2) Three objective functions. All three objective functions 

(maximum investment return, minimum risk, minimum P/E) are considered. In this 

test, our method is investigated. The optimal frontiers are shown in Figure 3 and 

the results (MED, VRE, MRE and runtime) are presented in Table 2.  

As showed in Table 1, on metrics MED, VAR and MRE, the HS-TLBO 

algorithm is superior to other four algorithms except for dataset HangSeng. 

However, the runtime of DEaf-MOPS/D is much less than other four algorithms on 

all datasets, it is about a tenth of runtime of HS-TLBO. The performance of 

DEaf-MOPS/D on other metrics is also competitive compare to HS-TLBO for the 

unconstraint portfolio selection problems. 

It can be observed in Figure 3 that optimal frontiers obtained by using 

DEaf-MOPS/D algorithm on five datasets are clearly hierarchical and evenly 

distributed. The larger the P/E value is, the greater the risk and the return are. In 

Table 2, the MED, VRE and MRE are calculated according to the risks and returns 

of optimal frontiers, which also displays very high-precision values on MED and 

MRE. 

 

Table 1. The experimental results of five algorithms on five datasets 

Data 
Metric 

index 
DEaf-MOPS/D HS-TLBO HSDS GA PSO 
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HangSeng 

MED 2.91E-06 7.75E-07 6.59E-07 5.90E-04 7.40E-04 

VRE 1.59E-01 1.94E-02 1.60E-02 2.90E-01 3.90E-01 

MRE 1.77E-02 8.89E-03 7.89E-03 1.10E-01 1.30E-01 

Runtime(s) 1.07E+01 1.47E+02 1.81E+02 1.08E+02 7.51E+01 

DAX 100 

MED 2.79E-06 1.80E-06 1.47E-04 1.20E-03 1.40E-03 

VRE 4.75E-01 9.60E-02 7.09E+00 3.10E-01 3.90E-01 

MRE 1.28E-02 9.96E-03 1.26E+00 1.20E-01 1.30E-01 

Runtime(s) 8.73E+01 1.27E+03 1.57E+03 9.30E+02 6.50E+02 

FTSE 100 

MED 2.20E-06 4.75E-07 3.72E-05 3.00E-04 3.30E-04 

VRE 4.82E-01 2.37E-02 2.66E+00 5.00E-01 5.40E-01 

MRE 9.50E-03 5.86E-03 3.09E-01 5.70E-02 6.40E-02 

Runtime(s) 9.92E+01 1.44E+03 1.77E+03 1.05E+03 7.33E+02 

S&P 100 

MED 2.93E-06 1.56E-06 7.34E-05 6.20E-04 7.90E-04 

VRE 6.53E-01 7.28E-02 3.60E+00 6.10E-01 6.90E-01 

MRE 1.32E-02 1.05E-02 9.75E-01 2.10E-01 2.50E-01 

Runtime(s) 1.29E+02 1.85E+03 2.28E+03 1.35E+03 9.43E+02 

Nikkei 

MED 1.02E-06 8.33E-07 4.03E-05 1.50E-03 2.90E-04 

VRE 1.23E-01 6.36E-02 3.18E+00 2.10E-01 4.30E-01 

MRE 1.76E-02 1.34E-02 8.32E-01 9.30E-01 1.40E-01 

Runtime(s) 1.32E+03 1.84E+04 2.27E+04 1.35E+04 9.40E+03 

 

Table 2. The test results of DEaf-MOPS/D algorithm for Test 1.2 

Data MED VRE MRE Runtime(s) 

HangSeng 7.46e-04 4.32e+01 4.94e+00 2294.69228 

DAX 100 7.16e-04 5.96e+01 1.58e+00 6614.481647 

FTSE 100 4.03e-04 4.37e+01 1.60e+00 7192.021137 

S&P 100 8.47e-04 5.95e+01 2.79e+00 8224.338064 

Nikkei 2.48e-04 3.20e+01 8.64e-01 37559.665309 
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Figure 3. The optimal frontiers of three objectives using DEaf-MOPS/D 

6.2 Constraint tests.  

The cardinality K=min (0.1D, 20) for the cardinality constraint. The 

constraint of portfolio weights proportion of each asset: 0.01L , 0.5U  . 

For the transaction cost constraint, the fixed transaction cost is equal to one 

thousandth of one millimeter of mean expected return and the variable transaction 
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cost of ith asset is set to /1000r3x ii
. For the constraint tests, we also investigate 

two objective and three objective functions, respectively. 

(Test 2.1) Two objective functions with cardinality constraint, but 

without transaction cost constraint. Table 3 summarizes the test results of three 

algorithms (DEaf-MOPS/D, HS-TLBO and HSDS). 

(Test 2.2) Two objective functions with transaction cost constraint. The 

experimental results are summarized in Table and Figure 4. 

(Test 2.3) Three objective functions. In Test 2.3, our algorithm 

DEaf-MOPS/D is investigated. The surface of optimal frontiers is illustrated in 

Figure 5. 

 

Table 3. The experimental results of Test 2.1 

Data Metric index DEaf-MOPS/D HS-TLBO HSDS 

HangSeng 

MED 5.2245E-05 9.3584E-05 7.8019E-05 

VRE 3.4287E+00 4.8186E+00 1.6603E+00 

MRE 2.6296E-01 5.7416E-01 6.3577E-01 

Runtime(s) 1.6470E+02 5.4460E+02 6.5352E+02 

DAX 100 

MED 5.7979E-05 7.6153E-05 7.5593E-05 

VRE 6.9001E+00 7.2802E+00 7.0957E+00 

MRE 2.5784E-01 5.0561E-01 5.0335E-01 

Runtime(s) 7.3610E+02 2.5550E+03 3.0660E+03 

FTSE 100 

MED 2.9442E-05 9.1548E-05 7.6611E-05 

VRE 3.3374E+00 8.5931E+00 7.5298E+00 

MRE 1.7841E-01 6.0975E-01 4.9958E-01 

Runtime(s) 7.7351E+02 2.6327E+03 3.1593E+03 

S&P 100 

MED 3.5932E-05 1.1515E-04 6.7046E-05 

VRE 3.1993E+00 9.1221E+00 5.9638E+00 

MRE 2.5931E-01 1.1053E+00 8.2055E-01 

Runtime(s) 9.2521E+02 3.4858E+03 4.1829E+03 

Nikkei 

MED 3.8025E-05 4.0325E-05 5.1111E-05 

VRE 1.0585E+01 3.1790E+00 4.3668E+00 

MRE 3.0047E-01 8.3200E-01 1.0159E+00 

Runtime(s) 8.3620E+03 3.8344E+04 4.6012E+04 
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Table 4. The experimental results of Test 2.2 

Data Metric index DE-MOPS/D HS-TLBO HSDS 

HangSeng 

MED 6.62E-05 1.21E-04 1.14E-04 

VRE 4.10E+00 5.55E+00 5.15E+00 

MRE 3.53E-01 8.08E-01 7.59E-01 

Runtime(s) 1.86E+02 5.43E+02 6.82E+02 

DAX 100 

MED 6.43E-05 1.23E-04 1.22E-04 

VRE 7.94E+00 1.24E+01 1.20E+01 

MRE 2.66E-01 7.25E-01 7.22E-01 

Runtime(s) 8.05E+02 245E+03 3.07E+03 

FTSE 100 

MED 3.86E-05 1.28E-04 1.22E-04 

VRE 4.64E+00 1.29E+01 1.24E+01 

MRE 2.21E-01 7.91E-01 7.46E-01 

Runtime(s) 8.25E+02 2.97E+03 3.32E+03 

S&P 100 

MED 4.94E-05 2.59E-04 1.63E-04 

VRE 4.37E+00 1.70E+01 1.19E+01 

MRE 3.40E-01 2.61E+00 1.66E+00 

Runtime(s) 1.08E+03 3.81E+03 4.72E+03 

Nikkei 

MED 6.62E-05 1.22E-04 1.21E-04 

VRE 1.18E+01 1.82E+01 1.76E+01 

MRE 3.42E-01 8.62E+00 8.37E+01 

Runtime(s) 9.34E+03 3.60E+04 4.20E+04 

 

For (Test 2.1), we can find evidently from Table 3 that the DEaf-MOPS/D 

is the winner on all metrics, and its runtime is about one-third of HS-TLBO, and 

about a quarter of HSDS. In Table 4, we also can see that the DEaf-MOPS/D is 

superior to HS-TLBO AND HSDS obviously on all four metrics (MED, VRE, 

MRE and runtime). Figure 4 shows the optimal frontiers of three algorithms for 

solving Test 2.2. We can find the optimal fronties of DEaf-MOPS/D from it is 

more evenly distributed than those of HS-TLBO and HSDS. For (Test 2.3), the 

surfaces of optimal frontiers of DEaf-MOPS/D are distributed evenly for five 

datasets.  

The test results of DEaf-MOPS/D, that are summarized in Table 5, indicate 

DEaf-MOPS/D is efficient for solving multi-objective models with cardinality 

constraint and transaction cost constraint. 
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Table 5. The test results of DEaf-MOPS/D algorithm for Test 2.3 

Data MED VRE MRE Runtime(s) 

HangSeng 6.95e-04 3.72e+01 7.48e+00 3980.916048 

DAX 100 5.24e-04 6.72e+01 6.31e-01 5784.483789 

FTSE 100 3.56e-04 5.09e+01 1.36e+00 6011.046391 

S&P 100 4.62e-04 4.10e+01 2.00e+00 6528.265155 

Nikkei 2.43e-04 3.60e+01 6.65e-01 22831.154686 

 
Figure 4. The optimal frontiers of three algorithms for Test 2.2 
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Figure 5. The surface of optimal frontiers of DEaf-MOPS/D for Test 2.3 

7. Conclusion 

In this study, we are intended to solve high-dimensional multi-objective 

portfolio selection problems. Above all, cardinality constraint mean-variance 

model with transaction cost constraint and price-earnings ratio is introduced. Then 

an improved multi-objective differential evolution (DE) algorithm (DEaf-MOPS/D) 

with fine-tuning strategy are proposed, and decomposition strategy is utilized to 

solve multi-objective problems. Five simulation datasets are employed to 

investigate the performance of DEaf-MOPS/D and five differential kinds of tests 

are performed. The experimental results suggest that, for unconstraint problems, 
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the DEaf-MOPS/D is inferior to HS-TLBO on MED, VRE and MRE, but its 

runtime is much less than that of HS-TLBO. For constraint problems, the 

DEaf-MOPS/D is superior to comparison algorithms evidently on all four metrics, 

which demonstrates that the proposed algorithm is promising to solve complex 

multi-objective portfolio problems.  

 

8. ACKNOWLEDGEMENTS 

The author would like to thank all the editors, reviewers and referees for 

their constructive comments. This work was supported by the Ministry of 

education of Humanities and Social Science project, China under Nos. 

19YJCZH148. 

REFERENCES 

 

[1] A.R. Pouya, M. Solimanpur, M.J. Rezaee (2016), Solving Multi-objective 

Portfolio Optimization Problem Using Invasive Weed Optimization; Swarm 

Evolut. Comput.28:42–57; 

[2] B. Niu, Y. Fan, H. Xiao, B. Xue (2012), Bacterial Foraging Based 

Approaches to Portfolio Optimization with Liquidity Risk; Neurocomputing 98 

(3):90–100; 

[3] C.B. Kalayci, O. Ertenlice, H. Akyer, H. Aygoren (2017), An Artificial Bee 

Colony Algorithm with Feasibility Enforcement and Infeasibility Toleration 

Procedures for Cardinality Constrained Portfolio Optimization; Expert Syst. Appl. 

85 :61–75; 

[4] Chang T J , Meade N , Beasley J E , et al (2000), Heuristics for Cardinality 

Constrained Portfolio Optimisation[J]. Computers & Operations Research, 

27(13):1271-1302; 

[5] E. Zitzler, M. Laumanns, and L. Thiele (2001), SPEA2: Improving the 

Strength Pareto Evolutionary Algorithm for Multiobjective Optimization[C]// 

Evolutionary Methods for Design Optimization and Control with Applications to 

Industrial Problems, K. C. Giannakoglou, D. T. Tsahalis, J. Périaux, K. D. 

Papailiou, and T. Fogarty, Eds., Athens, Greece. 95–100; 



 

 

 

 

 

 

Shouheng Tuo, Hong He 

166 

 

DOI: 10.24818/18423264/53.3.19.09 

 
 

[6] Ertenlice O, Kalayci C. B. (2018), A Survey of Swarm Intelligence for 

Portfolio Optimization: Algorithms and Applications. Swarm & Evolutionary 

Computation, 39(4): 36-52; 

[7] H. Zhu, Y. Wang, K. Wang, Y. Chen (2011), Particle Swarm Optimization 

(PSO) for the Constrained Portfolio Optimization Problem; Expert Syst. Appl. 38 

(8): 10161–10169; 

[8] K. Deb, S. Agrawal, A. Pratap, et al. (2002), Meyarivan, A Fast and Elitist 

Multiobjective Genetic Algorithm: NSGA-II; IEEE Trans. Evol. Comput. 6(2): 

182–197; 

[9] K. Metaxiotis, K. Liagkouras (2012), Multiobjective Evolutionary 

Algorithms for Portfolio Management: A Comprehensive Literature Review; 

Expert Syst. Appl. 39 (14): 11685–11698; 

[10] K.Liagkouras, K.Metaxiotis (2018), Multi-period Mean–variance Fuzzy 

Portfolio Optimization Model with Transaction Costs. Engineering Applications 

of Artificial Intelligence, 67:260-269; 

[11] L. Tan, B. Niu, F. Lin, Q. Duan, L. Li(2013), Modified Bacterial Foraging 

Optimization for Constrained Portfolio Optimization; Inf. Technol. J. 12 

(23):7918–7921; 

[12] M. Woodside-Oriakhi, C. Lucas, J.E. Beasley(2011), Heuristic Algorithms 

for the Cardinality Constrained Efficient Frontier; Eur. J. Oper. Res. 

213:538–550; 

[13] M.J. Magill, G.M. Constantinides (1976), Portfolio Selection with 

Transactions Costs; J. Econ. Theor. 13 (2) 245–263; 

[14] Markowitz, H. M. (1959), Portfolio Selection: Efficient Diversification of 

Investments. John Wiley & Sons; 

[15] P. Jorion（1997), Value at Risk: The New Benchmark for Controlling 

Market Risk. Irwin Professional Pub.; 

[16] R.T. Rockafellar, S. Uryasev (2000), Optimization of Conditional 

Value-at-risk; J. Risk, 2:21–42; 

[17] S. Kamali(2014), Portfolio Optimization Using Particle Swarm 

Optimization and Genetic Algorithm; J. Math. Comput. Sci. 10: 85–90; 

[18] Strumberger I , Bacanin N , Tuba M (2017), Constrained Portfolio 

Optimization by Hybridized Bat Algorithm[C]// .International Conference on 

Intelligent Systems. IEEE, 2017;  



 

 

 

 

 

DEaf-MOPS/D: An Improved Differential Evolution Algorithm for Solving 

Complex Multi-objective Portfolio Selection Problems Based on Decomposition 

167 

 

DOI: 10.24818/18423264/53.3.19.09 

 
 

[19] T.Cura (2009), Particle Swarm Optimization Approach to Portfolio 

Optimization; Nonlinear Anal.:Real.WorldAppl.10(4): 2396–2406; 

[20] T.-J. Chang, N. Meade, J.E. Beasley, Y.M. Sharaiha (2000), Heuristics for 

Cardinality Constrained Portfolio Optimisation; Comput. Oper. Res. 

27:1271–1302; 

[21] Tuo S. H. (2016), A Modified Harmony Search Algorithm For Portfolio 

Optimization Problems[J]. Economic Computation & Economic Cybernetics 

Studies & Research, 50, ASE Publishing, Bucharest; 

[22] Tuo S. H., He H. (2018), Solving Complex Cardinality Constrained 

Mean-variance Portfolio Optimization Problems Using Hybrid HS and TLBO 

Algorithm. Economic Computation & Economic Cybernetics Studies & Research. 

52 (3):231-248, ASE Publishing, Bucharest; 

[23] Yamazaki, K. H. (1991), Mean-absolute Deviation Portfolio Optimization 

Model and Its Applications to Tokyo Stock Market. Management Science, 37(5), 

519-531; 

[24] Zhang Q., Hui L. (2007), MOEA/D: A Multiobjective Evolutionary 

Algorithm Based on Decomposition[J]. IEEE Transactions on Evolutionary 

Computation, 11(6):712-731. 

 


